
Program Monitoring with LTL in EAGLE

Howard Barringer*
University of Manchester, England

Allen Goidberg, Klaus Havelund
Kestrel Technology, NASA Ames Research Center, USA

Koushik Sen'
University of Illinois, Urbana Champaign, USA

Abstract

We briejy present a rule-based fiammork called
EAGLE, shown to be capable of defining and implemnt-
ing finite trace monitoring logics, including future and past
ti& temporal logic, atended regukzrexpresswns, real-time
and metric temporal logics (MTL), inrental logics, forms of
quantifid temporal logics, andso on In this paper we focus
on a linear temporal logic (L E) specialisation of EAGLE.
For an initial formula of size m, we establish upper bounds
of 0(m'2" login) ~d 0 (m 4 2 h 102 m) for the space ami
time cornpla-ty, respectively, of single step evaluarion over
an input trace. This bound is close to the lower bound
O(2f i) forfuture-time LTLpresented in [18]. EAGLE has
been successjklly used, in both LTL and metric LTL forms,
to test a real-time controller of an experimental NASA plan-
etary mvez

1. Introduction

Linear temporal logic (LTL) [1 7 is now widely used for
expressing properties of concurrent and reactive systems.
Associated, production quality, verification tools have been
developed, most notably based on model-checking tech-
nology, and have enjoyed much success when applied to
relatively small-scale models. Tremendous advances have
been made in combating the combinatoric state space explo-
sion inherent with dara and concurrency in model checking,
however, there remain serious limitations for its application
to full-scale models and to software. This has encouraged a
shift in the way model checking techniques are being ap-
plied, from full state space coverage to bounded use. for
sophisticated testing, or debugging, and from static appli-
cation to dynamic, or runtime, application. Our work on
EAGLE concerns this latter direction.

'This author is most grateful to RIACS/USRA and to the UK's EPSRC
under grant GR/S40435/01 for the partLal support provided to mhcl this
research.

*This author is gratefd for the support received from RIACS ta un-
dertake this research while parti15pating in the Summa Student Research
Program at the NASA Ames Researd~ Center.

In runtime verification a software component, an ob-
server, monitors the execution of a program and checks its
conformity with a requirement specification. Runtime ver-
ification can be applied to evaluate automatically test m s ,
either on-line or off-line, analyzing stored execution traces;
or it can be used on-line during operation. Several runtime
verification systems have been developed, of which some
were presented at three recent international workshops on
runtime verification [l]. Also a wide variety of specialised
logics, largely based on LTL, have been proposed, see for
example, [6, 7, 9, 8, 16, 15, 12, 11, 101. This wide va-
riety of logics caused us to search for a compact but gen-
eral framework for defining monitoring logics, which would
be powerful enough to capture essentially all of the above
described logics, and more. ,Much influenced by our ear-
lier work on executable temporal logic METATEM, see for
example [3], the logic EAGLE was the result. In [5], we
showed the richness and expressivity of EAGLE, described
an algorithm to synthesize monitors for EAGLE and com-
mented on an implementation of the framework in Java and
some initial experiments. However, we found that the effi-
ciency and complexity analysis of the general EAGLE mon-
itoring algorithm is difficult and can be shown to be depen-
dent on both the length of the trace and the size of the initial
formula in the worst case. In this paper, we thus investigate
the complexity and practical effectiveness of a specialised
version of the monitoring algorithm for the case of LTL con-
taining a fixed number of past and future time temporal o p
erators embedded as rules in EAGLE. We outline an effec-
tive implementation of the monitoring algorithm and prove
that its space and time complexity is exponential in the size
of the formula and which is independent of the length of
the trace for single step evaluation. This makes it scalable
in terms of space as we do not store the trace either explic-
itly or implicitly. Similar work was done in a rewriting
framework for the case of fume time LTL in [111; how-
ever, there the complexity of the monitoring was not clear
as it was dependent on the strategy used by the rewrite en-
gine for rewriting. The work in [121 addresses a monitoring
algorithm for past time LTL only.

The paper is structured as follows. Section 2 introduces
our logic framework EAGLE and then specializes it to LTL.
In section 3 we discuss the monitoring algorithm and cal-
culus with an illustrative example. This underlies our im-
plementation for the special case of LTL, which is briefly
described in section 4 where complexity bounds for the im-
plementation can also be found. Section 5 describes an
experiment performed using EAGLE, and shows how cyclic
deadlock poentials can be detected with EAGLE. Section 6
states conclusion and future work.

2 EAGLE and Linear Temporal Logic
EAGLE [5) offers a succinct but powerful set of primitives,
essentially supporting recursive parameterized equations,
with a minimalmaximal iix-point semantics together with
three temporal operators: next-time, previous-time, and
concatenation. The paramaimion of rules supports rea-
soning about data values as well as the embedding of real-
time, metric and statistical temporal iogics. In Section 2.1
we motivate the fundamental concepts of EAGLE through
some simple examples drawn from LTL before presenting
its formal deiinition. Then, in Section 2.2 we present a full
embedding of LTL in EAGLE and establish its correctness.

2.1 Introducing EAGLE
2.1.1 Fundamental Concepts

In most temporal logics, the formulas U F and OF satisfy
the following equivalences:

One can show that OF is a solution to the recursive equa-
tion X = F A ox; in fact it is the maximal solution. A
fundamental idea in our logic, EAGLE, is to support this
kind of recursive definition, and to enable users dehe their
own temporal combinators in such a fashion. In the curreat
framework one can write the following definitions for the
two combinators Always and Sometime:

m x A l w a y s (m F) = F A O A l w a y s (F)
& Somet izne(m F) = F V OSometme(F)

First note that these rules are parameterized by an EAGLE
formula (of type Form). Thus, assuming an atomic for-
mula, say x < 0, then, in the context of these two defini-
tions, we will be able to write EAGLE formulas such as,
Always(x > o), or Always(Sometime(x > 0)). Secondly,
note that the Always operator is dehed as IllilxiDJal; when
applied to a formula F it denotes the maximal solution to
the equation x = F A OX. On the other hand, the Sometime
operator is defined as a minimal. and Sometime(F) repre-
sents the minimal solution to the equation X = F V OX. In
EAGLE, this difference only becomes important when eval-
uating formulas at the boundaries of a trace.

EAGLE has been designed specifically as a general pur-
pose kernel temporal logic for run-time monitoring. So to

compiete this very brief tneoduction to EAGLE suppose one
wished to monitor the following property of a Java program
state containing two variables x and y: “whenever we reach
a stare whete x = k > 0 for some value k, then evenmZ1y
we will reach a state a~ which y == K’. In a linear temporal
logic augmented with first order quantification, we would
write: r(x > 0 + 3 . (k = x A oy = k)) . The parametriza-
tion mechanism of EAGLE allows data as well as formulas
as parameters and are able to encode the above as:

& R(&k) = SometimeCy == k)
m M = A l w a y s (x > 0 -+ R (x))

The definition starting with keyword man specifies the
EAGLE formula to be monitored. The rule R is parame-
terized with an integer B; it is instantiated in the monitor
M when x > 0 and hence captures the value of x at that mo-
ment Rule R replaces the existential quantilier. EAGLE also
provides a previous-time operator, which allows us to define
past time operators, and a concatenation operator, which al-
lows users to define interval based logics, and more. Data
parametrization works uniformly for rules over past as well
as future; this is non-trivial to achieve as the implementation
doesn’t store the trace, see PI.

2.12 EAGLE Syntax

A specillcation S comprises a declaration part D and an ob-
server part 0. D comprises zero or more rule definitions
R, and 0 comprises zero or more monitor definitions M,
which spec* what i s to be monitored. Rules and monitors
are named (N).

S ::= D O
D ::= R’
0 ::= M*
R ::= {E I m) N (T l x l , ... , T n x n) = F
M ::= m N = F
T ::= Ipnmitzvetype
F ::= exp / true I false 1 -+’ 1 F1 AF2 I Fl VF2 1 Fl -i F2 1

O F 1 O F 1 F1 .F2 N(F1, . . . ,Fn) 1 X,

A rule definition R is preceded by a keyword indicating
whether the interpretation is maximal or minimal. Param-
eters are typed, and can either be a formula of type Form,
or of a primitive type, such as &t long, etc.. The
body of a ruldmonitor is a boolean-aed formula of the
syntactic category Form. However, a monitor cannot have a
recursive deiinition, that is, a monitor defined as N = F
cannot use N in F . For rules we do not place such restric-
tions. The propositions of this logic are boolean expres-
sions over an observer state. Formulas are composed us-
ing standard propositional connectives together with a next-
state operator (OF), a previous-state operator (O F) , and
a concatenation-operator (R . Fz). Finally, rules can be ap-
plied and their parameters must be type correc~ formula
arguments can be any formula, with the restriction that if an
argument is an expression, it must be of boolean type.

2

2.13 EAGLE semantics

The semantics of the logic is delined in terms of a satis-
faction relation, /=, between execution traces and specifi-
cations. We assume dLar an execution trace CJ is a finite
sequence of program stares G = slsz .. .s,, where 101 = n
is the length of the trace. The i’th state sI of a trace a is
denoted by ~ (i) . The term 01’~: denotes the sub-trace of CJ

from position i to position j , both positions included. Given
a trace G and a specification D 0, we define:

0 k D 0 iff V (~ N = F) € O . ~ , ~ F D F

That is, a trace satisfies a s w c a t i o n if the trace, ob-
served from position 1 (the first state), satisfies each mon-
itored formula. The dehition of the satisfaction relation
/=D (Tme x ~ t > x Form, for a set of rule definitions
D, is presented below, where 0 5 i 5 n + 1 for some trace
o = s I s ~ . . - s ~ - ~otethatthepositionofatracecanbecome
0 (before the first s t a ~) when going backwards, and can be-
come n + l (after the last state) when going forwards, both
cases causing rule applications to evaluate to either true if
maximal or false if minimal, without considering the body
of the rules at that point.

a , i +D exp
0 9 2 k’=D!L@?
a,i +D false
a,i +D 7 F iff 0 , i FD F
0, i +D F1 AF2 iff 0,i /=D F1 anda,i F D F ~
O,i PD F1 v F2 iff 0, i #LI
0,i k~
a,i #D O F iff i 5 101 andcr,i+I /=D F
o,i +D O F iff 1 5 i and o,i - 1 +D F
0,i +D Fi .Fz iff 3jS.t i 5 5 101 + 1 and

iff 1 5 i 5 101 and evaI(enpj(o(i))

Or 0,i /=D F2
-+ F2 iff 0, i f=o F1 h p k S 0,i /=D F2

0[1J-11, i kD F] and &Jofl, 1 kD fi
0, i /=D WI , . . . ,Fm)

if1 5 i 5 101 then:
o,i+DF?q H F I , ..., xm++Fm]
where (N(T1 X I , . . . , Tm *m) = F) f D

rule N is definedas =in D
otherwise, if i = 0 or i = I O / + 1 then:

An atomic formula (exp) is evaluated in the current state,
i, in case the position i is within the trace (1 5 i _< n); for
the boundary cases (i = 0 and i = n + 1) it evaluates to false.
Propositional connectives have their usual semantics in all
positions. A next-time formula OF evaluates to true if the
current position is not beyond the last state and F holds
in the next position. Dually for the previous-time formula.
The concatenation formula FI . FZ is m e if the trace o can
be split into two sub-traces o = 0102, such that F1 is true
on 01, observed from the current position i, and F2 is true
on 02 (ignoring 01. and thereby limiting the scope of past
time operators). Applying a rule within the trace (positions
1 . . . n) consists of replacing the call with the right-hand side
of the definition, substituting arguments for formal param-
eters. At the boundaries (0 and n + 1) a rule application
evaluates to true if and only if it is maximal.

2.2 Linear Temporal Logic in EAGLE

We have briefly seen how in EAGLE one can define rules
for the C and 0 temporal operators for LTL. Here we com-
plete an embedding of propositional LTL in EAGLE and
prove its semantic correspondence. Figure 1 gives the se-
mantic definition of the since and until LTL temporal oper-
ators over finite traces; the definitions of 0 and 0. and the
propositional connectives, are as for EAGLE. We assume
the usual collection of future and past linear-time temporal
operators.

Figure 1. Semantic definitions for LTL

For each temporal operator, future and past, we define a cor-
responding EAGLE rule. The embedding is straightforward
and requires little explanation. The future time operators
give rise to the following set of rules:
- min Next- F j = O F

A l w a y s (F s F) = F A O A l w a y s (F)
- min S a m e t i m e (F s F) = F V OSOmetime(F)
a Untii(Fonn FI ,Form F2) = F2 V (F1 A CUntil.(Fl,F2))
max Unless(- F1,Form F7) = F2 V (F1 A OUnless(Fj,F2))

The past time operators of LTL give rise to the following
rules.
- min Previous(- F) =OF
m h l v a y s P a s t (m F) = F A OMwaysPas t (F))

S m e t i m e P a s t (h F) = F VOSometime?asc(F))
- min S i n c e (m F 1 , - Fz) = FzV(F1 AOSince (F l rF2))
maxZ ince (FonnF~ ,FormF~) =F2V(F1 AOZince(Fl ,F2))

An EAGLE context containing all of the above rules then
enables any propositional LTL monitoring formula to be
expressed as a monitoring formula in EAGLE by mapping
the LTL operators to the EAGLE counterparts. Note that
through simply combining the definitions for the future and
past time LTLs defined above, we obtain a temporal logic
over the future, present and past, in which one can freely
intermix the future and past time modalities.

.

correctness of Embedding:

To jushfy the above EAGLE definitions of LTL temporal
operators, we can define an embedding function Embed :

3

LTL --+ EAGLE that maps OF to Next(Embed(F)), UF to
Always(Embed(F)), etc., and then formally establish that
cs: i ~ L T L F iff 0, i / = E ~ ~ ~ ~ Embed(F) for all traces o and
indices i. The proof follows by induction over the structure
of the formula F ; insufficient space allows for its inclusion,
but see [4].

3 Algorithm

In t h i s section, we now outline the computation mecha-
nism used to determine whether a monitoring formula given
in LTL holds for some given input sequence of events. The
evaluation of a formula F on a state s = ~ (i) in a trace CT

results in another formula eval(F,s) with the property that
o,i /= F if and only if a,i + i evaZ(F,s). The deiinition of
the function evul: Form x State + Form uses another auxiI-
iary function updare : Form x State + Form- The role of the
function update is to pre-evaluate a formula if it is parded
by a previous operator. Formally, update has the property
that o, i /= O F 80, i+ 1 /= update(F,sf. Had there been no
past time modality in EAGLE we could have ignored update
and simply written o,i /= O F S o l i + 1 /= F. The value of
a formula F at the end of a trace is given by value(F). The
function value : Form -+ {true.false) when applied on F re-
turns @ if F is satisfied at the end of the trace or in other
words iff O, lo] + 1 + F and returns false otherwise. Thus
given a sequence of states slsz . . . s,, an LTL formula F writ-
ten in EAGLE is said to be satisfied by the sequence of states
if and only if v&{oal{. . . ev&eval(F, s1),sz) - . -sa)) is
true. The definition of the functions mal, update and value
fo- the CdCdus Of LTL S n b s e t Of EAGLE.

3.1 calculus

The eval, update and value functions are dehed a pri-
ori for all operators, which is not possible for fully general
EAGLE [SI. We do not define the functions on the previous
operator 0, since this operator is eliminated in the calcu-
lus. The definition of mal, update and value on the different
primitive EAGLE operators is gven in Figure 2. In the given
delinitions, OP can be A, V. +. Note that evaZ of a formula

state s. his ensures that if F contains any past time oper-
ators then update of F updates them properly. Moreover,
value(OF) is false as the operator 0 has a strong interpre-
tation in EAGLE. The value of a rule is and that of
a gn& rule is false.

v ~ w (R (F ~ , . . . , Fn)) =true if R is
vdict{R(Fi,. . . , Fn)) = false if R is a

Future Time Operators

Consider the Aiways operator:

~ rnax Always(- F) = F A OAlways(F)

of the form OF on a state's reduces to the update of F on .

-

Figure 2. eval, value and update definitions

For this rule eval and update are defined as follows.

eval(Always(F),s) = e ~ d (F AOAlways(F) ,s)
update(A1ways (F) , s) = Always(update{F, s))

Similarly we can give the calculus for the other future time
LTL operators as follows:

evd(Next(F),s) = eval(oF,s)
W e (N e X t (F) , =s=t (yP*(F,s) 1

eval(Sm.etLne(F),s) = evd(F V OSOmetme(F),s)
update(scmetime(F),s) = sometime(update(F,s))

evaZ(Unt i 1 (F1, F2) , s) = evd(F2 V (F1 A OUnt i 1 (F1, Fz)) , s)
update (Until(F1, F2), s) = Unti l (updare(F1, s) , upae (F2 , s))

eVuZ(tJnless(F1,F2),s) = mVal(F2 V (F' AGJnies s (F l tF2)) , s)
updare (Ijnles s (F1, Fz) , s) = Ijn i e s s (update (F1, s) , update(F2, s))

Past Time Operators

The past time LTL operators are defined in the form of rules
containing a 0 operator. In general, if a rule contains a for-
mula F guarded by a previous operator on its right hand side
then we evaluate F at every event and use the result of this
evaluation in the next state. Thus, the result of evaluating
F must be stored in some temporary placeholder so that it
can be used in the next state. To allocate a placeholder, we
introduce, for every formula guarded by a previous opera-
tor, an ar-pment in the rule and use these arguments in the
definition of eval and updare for this rule. Let us illusmte
this as follows.

m A I . w a y s P a s t (F F F) = F AOAlwaysPast(F)

4

For this rule we introduce another auxiliary rule
A?ways?aast’ that contains ah extra argument correspond-
ing to the formula OAlways?ast,(F). In any LTL formula,
we use this primed version of the rule instead of the original
rule.

A I - N Z ~ S P S S ~ (F) = k;mysPast’(F,x)
evd(Ailways?as t’(F,p&l), s) = e v d (F Apasr s)
updare (AlwaysPas t’(F,pasrl), s) =
AlwaysFast’(lrpdate(F, s) , eval(A:.~a~s?ast’(F,paszl), s))

Here, in eval, the subformula OAlwaysPast(F) guarded
by the previous operator is replaced by the argumentpast,
that contains the evaluation of the subformula in the pre-
vious state. In llpdate we not only update the argument
F but also evaluate the subformula AlwaysPast’(F,past,)
and pass it as second argument of AlwaysPast’. Thus in
the next state pastl is bound to OAlways?ast’(F,pml).
Xote that in the d e ~ t i o n of Aiwayspast’ we pass E as
the second argument. This is because, AlwaysPast being
defined a maxima3 operator, its previous value at the begin-
ning of the trace is =. Similarly, we can give the calculus
for the other past time LTL operators as follows:

Previou (F) = Previccs’(F, false)
eval(2revlous’(F,pasrl),s) = evdipasr, ,sj
up~e(”evious’(F,pa~,),s) =

SoinetimePast(F) = SornetimePast’(F,false)
evd(Sonet imePast’(F,parrl), s) = e v d (F Vpusrl, s)
Ilpdate(Somerine?ast‘(F,~tl),s) =

Since(F1 ,F2) = Since’(F1 ,F~,false)
evd(Since’(F1,FzIpart1),s) = 4 (F 2 V (4 APasri),~)

Previous’(up~e(F,s),eval(F,s))

Somet h e p a s t’(+(F,s), evui(SomechePast’(F,pasil) , s))

update(Since’(F1 , F ‘ , t m l) , s) =

Zince(F1,Fz) = Zince’(F1,F2,-)
eval(Zince’(F1,F2,pastl),s) =evd(F~V(Fl Apasr,) ,~)
updote(Zince’(F1 ,F2,pastl),s) =

Since’(updare(F1 , s), H e (F 1 , s), evd(Since’(F~, F2,pasrl), s))

Zince’(qhe(F1 p), Irpriate(F1 ,s),evd(Zince’(Fl ,F2,paSt1) , s))
For the sake of completeness of the calculus we explicitly
define value on the above LTL operators as follows:

value (Always (F)) = vdue(A1waysPas t’(F,pastl))
= valze(Unless(F1,F2)) = vaZue(Zince’(Fl,F2,pasrl)) =a
vdue(Sometine(F)) = vdue(SometimePast’(F,pastl))
= value(tintil(F,,F2)) = value(Since’(4,Fz,pnstl)) =faise

Note that in the above calculus we have eliminated the
previous operator by introducing an auxiliary argument or
placeholder for every formula guarded by the 0 o-.
So, we can’t use the operator 0 when writing an LTL for-
mula; instead we use the rule Previous as defined above.

Correctness of Evaluation

Given a set of definitions of eval, update and value func-
tions for the different operators of LTL, as detailed above,

5

we claim that for a gven sequence (3 = s1s2-..sn and an
EAGLE embedded LTL formula F:

0: 1 k~~~~~ F ii€vdUe(eval(. . . evd(eval(F,sl),s2). . .s,,)).

Insufficient space prohibits inclusion of the proof.

4 Implementation and Complexity

We have implemented in Java the EAGLE monitoring
framework. In order to make the implementation efficient
we use the decision procedure of Hsiang [13]. The proce-
dure reduces a tautological formula to the constant true, a
false formula to the constant false, and all other formulas
to canonical forms, each as an exclusive disjunction (e) of
conjunctions. The procedure is given below using equations
&at are shown to be Church-Rosser and terminating modulo
associativity and commutativity.

SmQllfy:

true A $ = $ false A @ = false
@ A $ = @ @ i V b = (% A %) @ @ i @ k
false30=0 01 +92=true9019(01A02)
46@= false 91 -%=tNee%e%
-0= true 9 0 0 i A (~ = ~) = ((o i A 9 2) 3 (~ i A @ 3 3)

In particular the equations @ A @ = Q and @E?@ = false en-
sures that, at the time of monitoIing, we do not expand the
formula beyond bound. The bound is given by the following
theorem:

Theorem 1 The size of the fonnulu at any stage of mni-
toring is bounded by 0(m22” logm), where m is the size of
the initial L E fonnuh @for which we mrted monitoring.

Proof The above set of equations, when regard& as
simplification rules, keeps any L?z formula in a canoni-
cal form, which is an exclusive disjunction of conjunctions,
where the conjuncts are either propositions or subformulas
having temporal operators at top.Moreover, after a series of
applications of eval on the states SI ,s2,-.-,sn, the conjuncts
in the n o d form evd(. . . eval(eval(cp, SI),^') - . . ,sn) are
propositions or subformulas of the initial formula 9, each
having a temporal operator at its top. Since there are at
most m such subformulas, it follows that there are at most
2’” possibilities to combine them in a conjunction. The
space requirement for a conjunction is O(mlogm), assum-
ing that in the conjunction, instead of keeping the actual
conjuncts, we keep a pointer to the conjuncts and assum-
ing that each pointer takes O(1ogm) bits.’ Therefore, one

‘Every unique subformula having a temporal apaator at the top m the
original formula can give rise to several copies in the process of monitor-
ing. For example, if we consider FI = UOq afta some steps, it may get

copies of Oqin 4. Itis easy to seeall such copies at any suge ofmnhr-
ing wi l l be same. So we can keep a single copy ofthem and in theformula
we use a pointer to pint to that copy.

converted to fi = 09 AUOq. In Fz the two subformulas 09al-e e Y

.
needs space O(m2" logm) to store the structure of any ex-
clusive disjunction of such conjunctions. Now, we need
to consider the storage requirements for each of the con-
juncts that appears in the conjunction. Note that, if a con-
junct contains a nested past time operator, the past, argu-
ment of that operator can be a formula. However, instead
of storing the actual formula at the argument past, we can
have a pointer to the formula. Thus, each conjunct can
take space up to O(m1ogm). Hence space required by all
the conjuncts is O(m210gm). Now for each past operator
we have a formula that is pointed to by the past, argu-
ment and all those formulas by the above reasoning can
take up space O(m22"iogm). Hence the total space re-
quirement is O(mlogm2" + m'logm + m22"logm), which
is 0(m~2~1ogrn).

The implementation contains a sirategy for the applica-
tion of these equations that ensures that the time complexity
of each step in monitoring is bounded. We next describe the
strategy briefly. Since, our LTL formulas are exclusive dis-
junction of conjunctions we can treat them as a tree of depth
two: the root node at depth 0 representing the operator,
the children of the root at depth 1 representing the A op-
erators, and the leaf nodes at depth 2 representing proposi-
tions and subformulas having temporal operators at the top.
The application of the mal function on a formula is done in
depth-first fashion on this tree and we build up the resultant
formula in a bottom-up fashion. At the leaves the applica-
tion of eval resuits either in the evaluation of a proposition
or the evaluation of a d e . The evaluation of a proposition
returns either true or false. We assume that this evaluation
takes unit time. On the other-hand, the evaluation of a rule
may result in another formula in canonical form. The for-
mula at any internal node (Le. a A node or a @ node) is then
evaluated by taking the conjunction (or exclusive disjunc-
tion) of the formulas of the children nodes as they get eval-
uated and then simplifying them using the set of equations
sbp i i fy . Note that the application of simplify on the
conjunction of two formulas requires the application of the
distributive equation 41 A (92 0 b3) = (@I A @2) 8 ($1 A $3)
and possibly other equations.

At any stage of this algorithm there are three formulas
that are active: the original formula F on which mal is ap-
plied, the formula F', and the result of the evaluation of
the subformula Fsub. So, by theorem 1 we can say that the
space complexity ofthis algorithmis 0(m22" Iogm). More-
over, as the algorithm traverses the formula once at each
node it can possibly spend O(m22mlogm) time to do the
conjunction and exclusive disjunction. Hence the time com-
plexity of the algorithm is 0(m~2~1ogrn). 0 (m~2~logm)
or O(m422" lo2 m). These two bounds are given as the fol-
lowing theorem.

Theorem 2 At any stage of monitoring the space and time

complexiry of the evaluarion of the mon&n?d LIZ formula
on the current s m e is 0 (m 2 , ~ logm) a d 0(m421" log2m)
mpectively.

5 Examples and Experiments
This section illustrates the use of Eagle on two

concurrency-related applications - detection of deadlock
potentials and testing of a real-time concurrent system.

5.1 Using Eagle for Deadlock Detection
We present an example that illustrates the use of EAGLE

to detect a simple class of cyclic deadlocks. SpeciScally
EAGLE monitors an event stream of lock acquisitions and
releases, and reports any cyclic lock dependencies. If there
are two threads tl and t2 such that tl takes lock 11, and then
prior to releasing ZI, rakes lock 12, and furthermore i f t2 takes
lock 12, and then prior to releasing Zz, takes lock ZI, then
there is a cyclic lock dependency that indicates the possi-
bility of deadlock. This is a simplification of the general
dining philosopher problem, restricted to cycles of length
two.

We present two implementations. One illusnates how
EAGLE integrates with Java, allowing one to intermix al-
gorithms written in a general programming language with
EAGLE monitors. The other is a "pure" solution that just
uses EAGLE rules. Each solution utilizes the ability of
EAGLE to parameterize rules with data values as well as
formulas.

For both implementations the state observed by EAGLE
contains three integer variables that get updated each time a
new lock or release event is sent to the observer. Let s be the
object representing the observer state. The variable s . type
is set to 1 if the event is a lock event and 2 if it is a release
event. s . thread is an integer which uniquely idenaes the
thread and s . lock uniquely identities the lock. For clar-
ity we define predicates s. lock () and s . release () that
test whether s .type is set to 1 or 2, respectively. We first
present the pure solution.

Conflict(& r,& 11 ,& Z2) =
iJntil(-(s.release() AsXhread = t As.Zock = Zz),

s.lock() As.thread = t As.lock = 11)
a Conf lictLock(& r,&t ZI ,&t 12) = s.Zock() A

sxhread # t As.Iock= 12 AConflict(sxh+ead,Zl,l2)
NescedCock@ r,&t I) =

Until(-$s.reZease() Asxhread =tAs.lock = I) ,
s.lock() AsJhread = t As.lock # 1 A
(OSometime(Conf lictLock(t,Z,s.Iock)) V
0 SometimeDast (Conf li ctLock(r, I , slock))))

NesredLock(s.rhread, s.Iock))
M = +ometime(s.Zock() A

6

The intuition is that the Sometime in monitor M is satis-
fied in a state where a lock is taken that is the "first" of the
four locks in the pattern described above. The duead and
the lock value of that lock are passed as data parameters to
Nestedbck which "searches" for a subsequent lock taben
by that thread pnor to the release of the first lock. If such
a second lock is found, it binds the data value of the sec-
ond lock to a data parameter and searches both forward and
backward through the trace with ConflictLock for a second
thread that takes the two locks in reverse order.

The second implementation uses a set data s a t w e
within the observer state that holds triples of values of the
form [t, I1 , I21 recording that thread t took nested locks I1 and
then 12. The predicate addlriple inserts such a triple into
the set and evaluates to true if there is no conflicting triple
in the set. A conflicting triple is one of the form lt2,l2,11]
for t2 # t .

mDrffLock(&r,&I) =s.Iock()As.rhreud=t As.Iock#I
CheckLocX(& r,& 1) = s.Iock() As2hread = t A

s.lock # I As.addTriple(r,I,s.lock)
m gelease(& r,& I) = s.relense() As.rhread = r A d o & = I
& Ees tedh ffLock(& r,& 1) =

Until(~Reiease(r,I),4iffLock(r,l))
NestecCheckLock(&r,&I) =

VntL(~Iielease(r,I),Checjclock(r, I))
M = Always((s.bck() hNestedDiffiock(s~hreod,s.Zock)j

-+ Nes tedCheckLock(s.th, dock)

The monitor identilies a first lock and the ru€e Nested-
Dz-ck returns true if a seumd, nested, lock is taken. If
so, NestedCheckLock adds the triple to the set and returns
false if a conflict exists.

5.2 Testing a Planetary Rover

The EAGLE logic has been applied in the testing of a
planetary rover controller, as part of an ongoing collabora-
tive effort with other colleagues (see [2]) to create a fully
automated test-case generation and execution environment
for this application. The controller consists of 35,000 lines
of C++ ;ode and is implemented as a multi-threaded sys-
tem, where synchronization between threads is performed
through shared variables, mutexes and condition variables.
The controller operates a rover, named K9, which essen-
tially is a s m a l l cadrobot on wheels. K9 itself is a prototype,
and serves to form the basis of experiments with rover mis-
sions on Mars. The controller executes plans given as input.
A plan is a tree-like structure of actions and sub-actions.
The leaf-actions control the rover hdware components.
Each action is optionally associated with time constraints
indicating when it should start and when it should termi-
nate. Figure 3 presents an example input plan. The plan
is named P and consists of two sub-tasks T1 and T2, which

7

; b l O &

:id P
:ode-list (

(task
:id T1
:start-terrrpora.-conditicns ((? s ta r t (1 5) i)

(T1 s t a r t (1 3 0) 1) :end-tenporal-conditions
1
(t a s K
:id T2
:star-,-terrrooral-co~~~~cK

)

Figure 3. Example plan

are supposed to be executed sequentially in the given order.
The plan specifies that T1 should start 1-5 seconds after P
starts and should end 1-30 seconds after T1 starts. Task T2
should start 10-20 seconds after T1 ends. The controller has
been hand-instrumented in a few places to generate an exe-
cution trace when executed. An example execution trace of
the plan in Figure 3 is presented below:

S t a r t P 397
stast T1 2407
silccess T1 2440
s ta r t T2 14070
success T 2 15200
success P 15360

In addition to information about start and (successful or fail-
ing) termination, each event in the trace is ass&ted with
a time-stamp in milliseconds since the start if the applica-
tion. The testing environment, named X9 (explorer of D),
contains a test-case generator, that automatically generates
input plans for the controller from a grammar describing
the structure of plans. A model checker extended with sym-
bolic execution is used to generate the plans [14]. Addi-
tionally, for each input plan a set of temporal formulas is
generated, that the execution trace obtained by executing
that plan should satisfy. The controller is executed on each
generated plan, and the implementation of EAGLE is used
to monitor that the generated execution trace satisfies the
formulas generated for that particular plan. The properties
generated for the plan in Figure 3 are presented in Figure 4,
and should be self-explainable.
x9 was evaluated by seeding errors in the rover con-

troller. One mor had to do with the closeness in time be-
tween termination of one task and the start of the succes-
sor. If a task & ended in a particular time range (after the
start rime of the successor T3, then task T2 would wrongly
fail rather than execute. Running x9 detected this prob-
lem immediately. Note that the property violated was bi-
nary/propositional in nature: a task failed that should have
succeeded.

Figure 4. Generated properties

EAGLE allows for the formulation of real-time properties
that take the time stamps into account Such an experiment
is mentioned in [SI. In that experiment a real unknown bug
was located. It was discovered that the application did not
check lower bounds on durations, whereas it should. That
is, if a task finished before it was supposed to, the task
should fail, but it wrongly succeeded. The bug was not im-
mediately corrected, and later showed up during a field test
of the rover.

6 Conclusion and Future Work
We have presented a repmentation of linear tempo-

ral logic with both past and fotme temporal operators in
EAGLE. We have shown how the generalited monitoring al-
gorithm for EAGLE becomes simple and elegantfor this par-
ticular case. We have bounded the space and time complex-
ity of this specialized algorithm and thus showed that gen-
eral L?z monitoring is space efficient if we use the EAGLE
framework. Initial experiments have been successful. Fu-
ture work includes: optimizing the current implementation
and investigating other efficient subsets of EAGLE.
References

111]st, 2nd and 3 d CAV Workshops on Runrime Venfiation
(RV'Ol - RV'03), volume 55(2), 70(4), 89(2) of EhJ7CS. El-
sevier Science: 2001,2002,2003.

121 C. Artho, D. Drusinsky, A. Goldberg, K. Havelund,
M. Lowry, C. Pasareanu, G. R o w and W. Vissex. Expai-
mens with Test Case Generation and Runtime Analysis. In
E. B&ger, A. G;nganrini, and E. Riccokne, editors, A b m t
State Machines (ASh4'03), volume 2589 of LNCS, pages 87-
107. Springer, March 2C03.

[31 H. Barringer, M. Fisher, D. Gabbay, G. Gough, and
R. Owens. METATEM: An Intmduction. Fonnal Aspects
of Computing, 7(5):533-549, 1995.

[4] €I. Barringer, A. Goldberg, K. Havelund, and K. S e a
EAGLE does Space Efficient LTL Monitoring. Pre-
Print CSPP-25, University of Manchester, Department

of Computer Science, October 2003. Download:
h t t p ~ ~ ~ w . c s . m a n . a c . u W c s p r e p ~ n ~ e P r i n ~ c s p p 2 5 . ~ .

[5J H. Barringer, A. Goldberg, K. Havelund, and K. Sen.
Rule-Based Runtime Verification. In Proceedings of
Fzfith Intemonal VMCAl conference (VMCAI'o4)
(To appear in WCS), January 2004. Download.
http:llwww.cs.man.ac.uk/cspreprintslprep

161 D. Drusinsky. The Temporal Rover and the ATG Rover. In
K. Havelund, I. Penix, and W. Visser, editors, SPIN Model
Checkrng and Software Enfiahon, volume 1885 of WCS,
pages 323-330. Springer, 2000.

171 D. Drusmsky. Monitonng Temporal Rules Combined with
Time Senes. In CAV'03, volume 2725 of LNCS, pages 114-
118. Springer-Verlag, 2003.

[8] B. Finkkiner, S . Sankaranarayanan, and H. Sipma. Collect-
ing Statistics over Runtime ExecutionS. In Pmeedings of
Runrime knfi&n (RV'02) [l], pages 36-55.

[9] B. Finkbeiner and H. Sipma Checking Fimte Traces using
Alternating Automata. In Proceedings of Runlime Venjka-
tion (RV'OI) [I], pages 44-60.

[IO] D. Giannakopoulou and K. Havelund. Automata-Based Ver-
Scation of Temporal Properties on Running Programs. In
Proceedings, Internahonal Conference on Automazed Soft-
ware Engineerzng (ASE'OI), pages 412416. ENTCS, 2001.
Coronado Island, California

[111 K. Havelund and G. Rogu Monitoring Programs using
Rewriting. In Proceedings, International Conference on Au-
tomated Software Engineering {ASE'OI), pages 135-143. In-
stitute of Electrical and Electronics Engineers, 2001. Coron-
ado Island, California.

[121 K. Havelund and G. Ro~u . Synthesizing Monitors for Safety
Properties. In Tools rmd Algorirhms for Constmaion and
Analysis of Systems (TACAS'O2), volume 2280 of Lecture
Notes in Computer Science, pages 342-356. Springer, 2002.

[131 I. Hsiang. Refutational Theorem Proving using Term Remit-
ing Systems. Artifiial Intelligence, 25255-300.1985.

[14] S . Khurshid, C. S . Pasareanu, and W. Viser. Generalized
Symbolic Execution for Model Checking and Testing. In
Proceedings of TACAS 2003. Warsm, Poland, April 2003.

[15] D. Komnkamp, T. Milam, R. Simmons, and J. Fanan-
dez. Collecting and Analyzing Data fiom Dimiuted Con-
trol Programs. In Proceedings ofRV'01 [l], pages 133-151.

[16] I. Lee, S . Kannan, M. Kim, 0. Sokolsky, and
M. Viswanathan. Runtime Assurance Based on Formal
Specifications. In Proceedings of the International Confer-
ence on Parallel and Distributed Processing Techniques and
Applications, 1999.

[171 A. Pnueli. The Temporal Logic of Programs. In Proceedings
of the 18th LEEE Symposium on Fowzdarions of Computer
Science, pages 46-77, 1977.

[18] K. Sen, G. Ro~u, and G. Agha. Generating Optimal Linear
Temporal Logic Monitors by Coinduction. In Proceedings
of 8th Asian Computing Science Conference (ASM"03) (To
appear in LVCS), December 2003.

8

